Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
BMC Public Health ; 23(1): 1492, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37542267

RESUMO

OBJECTIVE: In this study, we investigated the impact of COVID-19 NPIs in South Africa to understand their effectiveness in the reduction of transmission of COVID-19 in the South African population. This study also investigated the COVID-19 testing, reporting, hospitalised cases, excess deaths and COVID-19 modelling in the first wave of the COVID-19 epidemic in South Africa. METHODS: A semi-reactive stochastic COVID-19 model, the ARI COVID-19 SEIR model, was used to investigate the impact of NPIs in South Africa to understand their effectiveness in the reduction of COVID-19 transmission in the South African population. COVID-19 testing, reporting, hospitalised cases and excess deaths in the first COVID-19 epidemic wave in South Africa were investigated using regressional analysis and descriptive statistics. FINDINGS: The general trend in population movement in South African locations shows that the COVID-19 NPIs (National Lockdown Alert Levels 5,4,3,2) were approximately 30% more effective in reducing population movement concerning each increase by 1 Alert Level. The translated reduction in the effective SARS-CoV-2 daily contact number (ß) was 6.12% to 36.1% concerning increasing Alert Levels. Due to the implemented NPIs, the effective SARS-CoV-2 daily contact number in the first COVID-19 epidemic wave in South Africa was reduced by 58.1-71.1% while the peak was delayed by 84 days. The estimated COVID-19 reproductive number was between 1.98 to 0.40. During South Africa's first COVID-19 epidemic wave, the mean COVID-19 admission status in South African hospitals was 58.5%, 95% CI [58.1-59.0] in the general ward, 13.4%, 95% CI [13.1-13.7] in the intensive care unit, 13.3%, 95% CI [12.6-14.0] on oxygen, 6.37%, 95% CI [6.23-6.51] in high care, 6.29%, 95% CI [6.02-6.55] on ventilator and 2.13%, 95% CI [1.87-2.43] in isolation ward respectively. The estimated mean South African COVID-19 patient discharge rate was 11.9 days per patient. While the estimated mean of the South African COVID-19 patient case fatality rate (CFR) in hospital and outside the hospital was 2.06%, 95% CI [1.86-2.25] (deaths per admitted patients) and 2.30%, 95% CI [1.12-3.83](deaths per severe and critical cases) respectively. The relatively high coefficient of variance in COVID-19 model outputs observed in this study shows the uncertainty in the accuracy of the reviewed COVID-19 models in predicting the severity of COVID-19. However, the reviewed COVID-19 models were accurate in predicting the progression of the first COVID-19 epidemic wave in South Africa. CONCLUSION: The results from this study show that the COVID-19 NPI policies implemented by the Government of South Africa played a significant role in the reduction of COVID-19 active, hospitalised cases and deaths in South Africa's first COVID-19 epidemic wave. The results also show the use of COVID-19 modelling to understand the COVID-19 pandemic and the impact of regressor variables in an epidemic.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , África do Sul/epidemiologia , Pandemias/prevenção & controle , Teste para COVID-19 , Controle de Doenças Transmissíveis/métodos
2.
JMIRx Med ; 4: e34598, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37463043

RESUMO

Background: Emerging SARS-CoV-2 variants have been attributed to the occurrence of secondary, tertiary, quaternary, and quinary COVID-19 epidemic waves threatening vaccine efforts owing to their immune invasiveness. Since the importation of SARS-CoV-2 in South Africa, with the first reported COVID-19 case on March 5, 2020, South Africa has observed 5 consecutive COVID-19 epidemic waves. The evolution of SARS-CoV-2 has played a major role in the resurgence of COVID-19 epidemic waves in South Africa and across the globe. Objective: We aimed to conduct descriptive and inferential statistical analysis on South African COVID-19 epidemiological data to investigate the impact of SARS-CoV-2 lineages and COVID-19 vaccinations in South African COVID-19 epidemiology. Methods: The general methodology involved the collation and stratification, covariance, regression analysis, normalization, and comparative inferential statistical analysis through null hypothesis testing (paired 2-tailed t tests) of South African COVID-19 epidemiological data. Results: The mean daily positive COVID-19 tests in South Africa's first, second, third, fourth, and fifth COVID-19 epidemic wave periods were 11.5% (SD 8.58%), 11.5% (SD 8.45%), 13.3% (SD 9.72%), 13.1% (SD 9.91%), and 14.3% (SD 8.49%), respectively. The COVID-19 transmission rate in the first and second COVID-19 epidemic waves in South Africa was similar, while the COVID-19 transmission rate was higher in the third, fourth, and fifth COVID-19 epidemic waves than in the aforementioned waves. Most COVID-19 hospitalized cases in South Africa were in the general ward (60%-79.1%). Patients with COVID-19 on oxygen were the second-largest admission status (11.2%-16.8%), followed by patients with COVID-19 in the intensive care unit (8.07%-16.7%). Most patients hospitalized owing to COVID-19 in South Africa's first, second, third, and fourth COVID-19 epidemic waves were aged between 40 and 49 years (16.8%-20.4%) and 50 and 59 years (19.8%-25.3%). Patients admitted to the hospital owing to COVID-19 in the age groups of 0 to 19 years were relatively low (1.98%-4.59%). In general, COVID-19 hospital admissions in South Africa for the age groups between 0 and 29 years increased after each consecutive COVID-19 epidemic wave, while for age groups between 30 and 79 years, hospital admissions decreased. Most COVID-19 hospitalization deaths in South Africa in the first, second, third, fourth, and fifth COVID-19 epidemic waves were in the ages of 50 to 59 years (15.8%-24.8%), 60 to 69 years (15.9%-29.5%), and 70 to 79 years (16.6%-20.7%). Conclusions: The relaxation of COVID-19 nonpharmaceutical intervention health policies in South Africa and the evolution of SARS-CoV-2 were associated with increased COVID-19 transmission and severity in the South African population. COVID-19 vaccination in South Africa was strongly associated with a decrease in COVID-19 hospitalization and severity in South Africa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA